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ABSTRACT

The state space in Multiagent Reinforcement Learning (MARL) grows exponen-
tially with the agent number. Such a curse of dimensionality results in poor scal-
ability and low sample efficiency, inhibiting MARL for decades. To break this
curse, we propose a unified agent permutation framework that exploits the permu-
tation invariance (PI) and permutation equivariance (PE) inductive biases to re-
duce the multiagent state space. Our insight is that permuting the order of entities
in the factored multiagent state space does not change the information. Specifi-
cally, we propose two novel implementations: a Dynamic Permutation Network
(DPN) and a Hyper Policy Network (HPN). The core idea is to build separate
entity-wise PI input and PE output network modules to connect the entity-factored
state space and action space in an end-to-end way. DPN achieves such connections
by two separate module selection networks, which consistently assign the same
input module to the same input entity (guarantee PI) and assign the same output
module to the same entity-related output (guarantee PE). To enhance the repre-
sentation capability, HPN replaces the module selection networks of DPN with
hypernetworks to directly generate the corresponding module weights. Extensive
experiments in SMAC, SMACv2, Google Research Football, and MPE validate
that the proposed methods significantly boost the performance and the learning ef-
ficiency of existing MARL algorithms. Remarkably, in SMAC, we achieve 100%
win rates in almost all hard and super-hard scenarios (never achieved before).

1 INTRODUCTION

Multiagent Reinforcement Learning (MARL) has successfully addressed many real-world problems
(Vinyals et al., 2019; Berner et al., 2019; Hüttenrauch et al., 2017). However, MARL algorithms
still suffer from poor sample-efficiency and poor scalability due to the curse of dimensionality, i.e.,
the joint state-action space grows exponentially as the agent number increases (Li et al., 2022). A
way to solve this problem is to properly reduce the size of the state-action space (van der Pol et al.,
2021; Li et al., 2021). In this paper, we study how to utilize the permutation invariance (PI) and
permutation equivariance (PE)1 inductive biases to reduce the state space in MARL.

Let G be the set of all permutation matrices2 of size m×m and g be a specific permutation matrix
of G. A function f : X → Y where X = [x1, . . . xm]

T, is PI if permutation of the input com-
ponents does not change the function output, i.e., f(g [x1, . . . xm]

T
) = f([x1, . . . xm]

T
),∀g ∈ G.

In contrast, a function f : X → Y where X = [x1, . . . xm]
T and Y = [y1, . . . ym]

T, is PE if
permutation of the input components also permutes the outputs with the same permutation g, i.e.,

∗Work done during as research intern at Huawei Noah’s Ark Lab. Correspondence to: Xiaotian Hao <xiao-
tianhao@tju.edu.cn>

1For brevity, we use PI/PE as abbreviation of permutation invariance/permutation equivariance (nouns) or
permutation-invariant/permutation-equivariant (adjectives) depending on the context.

2A permutation matrix has exactly a single unit value in every row and column and zeros everywhere else.
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f(g [x1, . . . xm]
T
) = g [y1, . . . ym]

T
,∀g ∈ G. For functions that are not PI or PE, we uniformly

denote them as permutation-sensitive functions.

A multiagent environment typically consists of m individual entities, including n learning agents
and m − n non-player objects. The observation oi of each agent i is usually composed of the
features of the m entities, i.e., [x1, . . . xm], where xi ∈ X represents each entity’s features and X
is the feature space. If simply representing oi as a concatenation of [x1, . . . xm] in a fixed order, the
observation space will be |X |m. A prior knowledge is that although there are m! different orders of
these entities, they inherently have the same information. Thus building functions that are insensitive
to the entities’ orders can significantly reduce the observation space by a factor of 1

m! . To this end, in
this paper, we exploit both PI and PE functions to design more sample efficient MARL algorithms.
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Figure 1: A motivation example in SMAC.

Take the individual Q-network of the StarCraft Multia-
gent Challenge (SMAC) benchmark (Samvelyan et al.,
2019) Qi(ai|oi) as an example. As shown in Fig.1,
the input oi consists of two groups of entities: an ally
group oally

i and an enemy group oenemy
i . The outputs

consist of two groups as well, i.e., Q-values for move
actions Amove

i and Q-values for attack actions Aattack
i .

Given the same oi arranged in different orders, the Q-
values of Amove

i should be kept the same, thus we can
use PI architectures to make Qi(Amove

i |oi) learn more
efficiently. For Qi(Aattack

i |oi), since there exists a one-
to-one correspondence between each enemy’s features
in oenemy

i and each attack action in Aattack
i , permuta-

tions of oenemy
i should result in the same permutations

of Aattack
i , so we can use PE architectures to make Qi(Aattack

i |oi) learn more efficiently.

To achieve PI, there are two types of previous methods. The first employs the idea of data augmen-
tation, e.g., Ye et al. (2020) propose data augmented MADDPG, which generates more training data
by shuffling the order of the input components and forcedly maps these generated data to the same
output through training. But it is inefficient to train a permutation-sensitive function to output the
same value when taking features in different orders as inputs. The second type applies naturally PI
architectures, such as Deep Sets (Li et al., 2021) and GNNs (Wang et al., 2020b; Liu et al., 2020), to
MARL. These models use shared input embedding layers and entity-wise pooling layers to achieve
PI. However, using shared embedding layers limits the model’s representational capacity and may
result in poor performance (Wagstaff et al., 2019). For PE, to the best of our knowledge, it has drawn
relatively less attention in MARL community and few works exploit this property.

In general, the architecture of an agent’s policy network can be considered as three parts: ❶ an
input layer, ❷ a backbone network (main architecture) and ❸ an output layer. To achieve PI and PE,
we follow the minimal modification principle and propose a light-yet-efficient agent permutation
framework, where we only modify the input and output layers while keeping backbone unchanged.
Thus our method can be more easily plugged into existing MARL methods. The core idea is that,
instead of using shared embedding layers, we build non-shared entity-wise PI input and PE output
network modules to connect the entity-factored state space and action space in an end-to-end way.

Specifically, we propose two novel implementations: a Dynamic Permutation Network (DPN) and
a Hyper Policy Network (HPN). To achieve PI, DPN builds a separate module selection network,
which consistently selects the same input module for the same input entity no matter where the en-
tity is arranged and then merges all input modules’ outputs by sum pooling. Similarly, to achieve
PE, it builds a second module selection network, which always assigns the same output module
to the same entity-related output. However, one restriction of DPN is that the number of network
modules is limited. As a result, the module assigned to each entity may not be the best fit. To relax
the restriction and enhance the representational capability, we further propose HPN which replaces
the module selection networks of DPN with hypernetworks and directly generates the network pa-
rameters of the corresponding modules (by taking each entity’s own features as input). Entities with
different features are processed by modules with entity-specific parameters. Therefore, the model’s
representational capability is improved while ensuring the PI and PE properties.

Extensive evaluations in SMAC, SMACv2, Google Research Football and MPE validate that DPN
and HPN can be easily integrated into many existing MARL algorithms (both value-based and
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policy-based) and significantly boost their learning efficiency and converged performance. Re-
markably, we achieve 100% win-rates in almost all hard and super-hard scenarios of SMAC,
which has never been achieved before to the best of our knowledge. The code is available at
https://github.com/tjuHaoXiaotian/API-Network.

2 RELATED WORK

To highlight our method, we briefly summarize the related works that consider the PI or PE property.

Concatenation. Typical MARL algorithms, e.g., QMIX (Rashid et al., 2018) and MADDPG (Lowe
et al., 2017) simply represent the set input as a concatenation of the m entities’ features in a fixed
order and feed the concatenated features into permutation-sensitive functions, e.g., multilayer per-
ceptron (MLP). As each entity’s feature space size is |X |, the size of the joint feature space after
concatenating will grow exponentially to |X |m, thus these methods suffer sample inefficiency.

Data Augmentation. To reduce the number of environmental interactions, Ye et al. (2020) propose
data augmented MADDPG which generates more training data by shuffling the order of [x1, . . . xm]
and additionally updates the model based on the generated data. However, the method requires more
computational resources and is more time-consuming. Besides, as the generated data contains the
same information as the original one, they should have the same Q-value. But it is inefficient to train
a permutation-sensitive function to output the same value when taking differently-ordered inputs.

Deep Set & Graph Neural Network. Instead of doing data augmentation, Deep Set (Zaheer et al.,
2017) constructs a family of PI neural architectures for learning set representations. Each component
xi is mapped separately to some latent space using a shared embedding layer ϕ(xi). These latent
representations are then merged by a PI pooling layer (e.g. sum, mean) to ensure the PI of the
whole function, e.g., f(X) = ρ (Σm

i=1ϕ(xi)), where ρ can be any function. Graph Neural Networks
(GNNs) (Veličković et al., 2018; Battaglia et al., 2018) also adopt shared embedding and pooling
layers to learn functions on graphs. Wang et al. (2020b); Li et al. (2021) and Jiang et al. (2018);
Liu et al. (2020) have applied Deep Set and GNN to MARL. However, due to the use of the shared
embedding ϕ(xi), the representation capacity is usually limited (Wagstaff et al., 2019).

Multi-head Self-Attention & Transformer. To improve the representational capacity, Set Trans-
former (Lee et al., 2019) employs the multi-head self-attention mechanism (Vaswani et al., 2017) to
process every xi of the input set, which allows the method to encode higher-order interactions be-
tween elements in the set. Most recently, Hu et al. (2021b) adopt Transformer (Vaswani et al., 2017)
to MARL and proposes UPDeT, which could handle various input sizes. But UPDeT is originally
designed for transfer learning scenarios and does not explicitly consider the PI and PE properties.

PE Functions in MARL. In the deep learning literature, some works have studied the effectiveness
of PE functions when dealing with problems defined over graphs (Maron et al., 2018; Keriven &
Peyré, 2019). However, in MARL, few works exploit the PE property to the best of our knowl-
edge. One related work is Action Semantics Network (ASN) (Wang et al., 2019), which studies the
different effects of different types of actions but does not directly consider the PE property.

3 PROBLEM STATEMENT

3.1 ENTITY-FACTORED MODELING IN DEC-POMDP

A cooperative multiagent environment typically consists of m entities, including n learning agents
and m−n non-player objects. We follow the definition of Dec-POMDP (Oliehoek & Amato, 2016).
At each step, each agent i receives an observation oi ∈ Oi which contains partial information of the
state s ∈ S, and executes an action ai ∈ Ai according to a policy πi(ai|oi). The environment transits
to the next state s′ and all agents receive a shared global reward. The target is to find optimal policies
for all agents which can maximize the expected cumulative global reward. Each agent’s individual
action-value function is denoted as Qi(oi, ai). Detailed definition can be found in Appendix B.1.

Modeling MARL in factored spaces is a common practice. Many recent works (Qin et al., 2022;
Wang et al., 2020b; Hu et al., 2021b; Long et al., 2019; Wang et al., 2019) model the observation and
the state of typical MARL benchmarks e.g., SMAC (Qin et al., 2022; Hu et al., 2021b), MPE (Long
et al., 2019) and Neural MMO (Wang et al., 2019), into factored parts relating to the environment,
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agent itself and other entities. We follow such a common entity-factored setting that both the state
space and the observation space are factorizable and can be represented as entity-related features,
i.e., s ∈ S ⊆ Rm×ds and oi ∈ O ⊆ Rm×do , where ds and do denote the feature dimension of
each entity in the state and the observation. For the action space, we consider a general setting that
each agent’s actions are composed of two types: a set of m entity-correlated actions Aequiv

3 and a
set of entity-uncorrelated actions Ainv, i.e., Ai ≜ (Aequiv,Ainv). The entity-correlated actions mean
that there exists a one-to-one correspondence between each entity and each action, e.g., ‘attacking
which enemy’ in SMAC or ‘passing the ball to which teammate’ in football games. Therefore,
aequiv ∈ Aequiv should be equivariant with the permutation of oi and ainv ∈ A inv should be invariant.
Tasks only considering one of the two types of actions can be considered special cases.

3.2 OUR TARGET: DESIGNING PI AND PE POLICY NETWORKS

Let g ∈ G be an arbitrary permutation matrix. We define that g operates on oi by permuting the
orders of the m entities’ features, i.e., goi, and that g operates on ai = (aequiv, ainv) by permuting
the orders of aequiv but leaving ainv unchanged, i.e., gai ≜ (gaequiv, ainv). Our target is to inject the
PI and PE inductive biases into the policy network design such that:

πi(ai|goi) = gπi(ai|oi) ≜ (gπi(aequiv|oi), πi(ainv|oi)) ∀g ∈ G, oi ∈ O (1)

where g operates on πi by permuting the orders of πi(aequiv|oi) while leaving πi(ainv|oi) unchanged.

4 METHODOLOGY

4.1 THE HIGH-LEVEL IDEA

𝐵𝐵𝐴𝐴

Backbone  networkInput layer Output  layer

𝑪𝑪
𝑚𝑚

𝑑𝑑𝑜𝑜
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③
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Figure 2: The ideal PI and PE policy network.

Our target policy network architecture is shown
in Fig.2, which consists of four modules: ❶ in-
put module A, ❷ backbone module B which
could be any architecture, ❸ output module C
for actions ainv and ❹ output module D for
actions aequiv. For brevity, we denote the in-
puts and outputs of these modules as: zi =
A(oi), hi = B(zi), πi(ainv|oi) = C(hi), and
πi(aequiv|oi) = D(hi) respectively.

To achieve equation 1, we have to modify the architectures of {A,B,C,D} such that the outputs of
C are PI and the outputs of D are PE. In this paper, we propose to directly modify A to be PI and
modify D to be PE with respect to the input oi, and keep the backbone module B and output module
C unchanged. The following Propositions show that our proposal is a feasible and simple solution.

Proposition 1 If we make module A become PI, the output of module C will immediately become
PI without modifying module B and C.

Proof. Given two different inputs goi and oi,∀g ∈ G, since module A is PI, then A(goi) = A(oi).
Accordingly, for any functions B and C, we have (C ◦B ◦A) (goi) = (C ◦B ◦A) (oi) , which is
exactly the definition of PI.

Corollary 1. With module A being PI, if not modifying module D, the output of D will also imme-
diately become PI, i.e., (D ◦B ◦A) (goi) = (D ◦B ◦A) (oi) ,∀g ∈ G.

Proposition 2 With module A being PI, to make the output of module D become PE, we must
introduce oi as an additional input.

Proof. According to corollary 1, with module A being PI, module D also becomes PI. To convert
module D into PE, we must have module D know the entities’ order in oi. Thus we have to add
oi as an additional input to D, i.e., πi(aequiv|oi) = D(hi, oi). Then, we only have to modify the
architecture of D such that D(hi, goi) = gD(hi, oi) = gπi(aequiv|oi),∀g ∈ G.

3Note that the size of Aequiv can be smaller than m, i.e., only corresponding to a subset of the entities (e.g.,
enemies or teammates). We use m here for the target of simplifying notations.
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Figure 3: an FC-layer in submodule view (left); dynamic permutation network architecture (right).

Minimal Modification Principle. Although modifying different parts of {A,B,C,D} may also
achieve equation 1, the main advantage of our proposal is that we can keep the backbone module
B (and output module C) unchanged. Since existing algorithms have invested a lot in handling
MARL-specific problems, e.g., they usually incorporate Recurrent Neural Networks (RNNs) into
the backbone module B to handle the partially observable inputs, we believe that achieving PI and
PE without modifying the backbone architectures of the underlying MARL algorithms is beneficial.
Following this minimal modification principle, our proposed method can be more easily plugged
into many types of existing MARL algorithms, which will be shown in section 5. In the following,
we propose two designs to implement the PI module A and the PE module D.

4.2 DYNAMIC PERMUTATION NETWORK

As a common practice adopted by many MARL algorithms, e.g., QMIX (Rashid et al., 2018), MAD-
DPG (Lowe et al., 2017) and MAPPO (Yu et al., 2021), module A, C and D are Fully Connected
(FC) Layers and module B is a Deep Neural Network (DNN) which usually incorporates RNNs to
handle the partially observable inputs. Given an input oi containing m entities’ features, an FC-layer
under a submodule view is shown in Fig.3 (left), which has m independent weight matrices. If we
denote Win =

[
Win

1 , . . .W
in
m

]T
as the weights of the FC-layer A, the output is computed as4:

zi =

m∑
j=1

oi[j]Win[j] (2)

where [j] indicates the j-th element. Similarly, we denote Wout = [Wout
1 , . . .Wout

m ]
T as the weight

matrices of the output layer D. The output πi(aequiv|oi) is computed as:
πi(aequiv|oi)[j] = hiWout[j] ∀j ∈ {1, . . . ,m} (3)

PI Input Layer A. According to equation 2, permuting oi, i.e., o′i = goi, will result in a different
output z′i, as the j-th input is changed to o′i[j] while the j-th weight matrix remains unchanged. To
make an FC-layer become PI, we design a PI weight matrix selection strategy for each oi[j] such
that no matter where oi[j] is arranged, the same oi[j] will always be multiplied by the same weight
matrix. Specifically, we build a weight selection network of which the output dimension is m:

pin
([
Win

1 , . . .W
in
m

]∣∣oi[j]) = softmax(MLP (oi[j])) (4)

where the k-th output pin
(
Win

k

∣∣oi[j]) indicates the probability that oi[j] selects the k-th weight
matrix of Win. Then, for each oi[j], we choose the weight matrix with the maximum probability.
However, directly selecting the argmax index is not differentiable. To make the selection process
trainable, we apply a Straight Through Estimator (Van Den Oord et al., 2017) to get the one-hot
encoding of the argmax index. We denote it as p̂in (oi[j]). The weight matrix with the maximum
probability can be acquired by p̂in (oi[j])Win, i.e. selecting the corresponding row from Win. Over-
all, no matter which orders the input oi is arranged, the output of layer A is computed as:

zi =

m∑
j=1

o′i[j] (p̂in (o
′
i[j])Win) o′i = goi, ∀g ∈ G (5)

4For brevity and clarity, all linear layers are described without an explicit bias term; adding one does not
affect the analysis.
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Figure 4: PI and PE network with hypernetworks.

Since the selection network only takes each entity’s features oi[j] as input, the same oi[j] will always
generate the same probability distribution and thus the same weight matrix will be selected no matter
where oi[j] is ranked. Therefore, the resulting zi remains the same regardless of the arranged orders
of oi, i.e., layer A becomes PI. An illustration architecture is shown in Fig.3 (right).

PE Output Layer D. To make the output layer D achieve PE, we also build a weight selection
network p̂out (oi[j]) for each entity-related output. The j-th output of D is computed as:

πi(aequiv|o′i)[j] = hi(p̂out (o
′
i[j])Wout) o′i = goi,∀g ∈ G,∀j ∈ {1, . . . ,m} (6)

For ∀g ∈ G, the j-th element of o′i will always correspond to the same matrix of Wout and thus the
j-th output of πi(aequiv|o′i) will always have the same value. The input order change will result in
the same output order change, thus achieving PE. The architecture is shown in Fig.3 (right).

4.3 HYPER POLICY NETWORK

The core idea of DPN is to always assign the same weight matrix to each oi[j]. Compared with Deep
Set style methods which use a single shared weight matrix to embed the input oi, i.e., |Win| = 1,
DPN’s representational capacity has been improved, i.e., |Win| = m. However, the sizes of Win and
Wout are still limited. One restriction is that for each oi[j], we can only select weight matrices from
these limited parameter sets. Thus, the weight matrix assigned to each oi[j] may not be the best fit.

One question is whether we can provide an infinite number of candidate weight matrices such that
the solution space of the assignment is no longer constrained. To achieve this, we propose a Hyper
Policy Network (HPN), which incorporates hypernetworks (Ha et al., 2016) to generate customized
embedding weights for each oi[j], by taking oi[j] as input. Hypernetworks (Ha et al., 2016) are a
family of neural architectures which use one network to generate the weights for another network.
Since we consider the outputs of hypernetworks as the weights in Win and Wout, the sizes of these
parameter sets are no longer limited to m. To better understand our motivations, we provide a simple
policy evaluation experiment in Appendix A.1, where we can directly construct an infinite number
of candidate weight matrices, to show the influence of the model’s representational capacity.

PI Input Layer A. For the input layer A, we build a hypernetwork hpin (oi[j]) = MLP (oi[j]) to
generate a corresponding Win[j] for each oi[j].

zi =

m∑
j=1

o′i[j] hpin (o
′
i[j]) o′i = goi, ∀g ∈ G (7)

As shown in Fig.4, we first feed all oi[j]s (colored by different blues), into the shared hypernetwork
hpin (oi[j]) (colored in yellow), whose input size is do and output size is dodh5. Then, we reshape
the output for each oi[j] to do × dh and regard it as the weight matrix Win[j]. Different oi[j]s will
generate different weight matrices and the same oi[j] will always correspond to the same one no
matter where it is arranged. The output of layer A is computed according to equation 7. Since each
oi[j] is embedded separately by its corresponding Win[j] and then merged by a PI ‘sum’ function,
the PI property is ensured.

5do is the dimension of oi[j] and dh is the dimension of hi.
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Figure 5: Comparisons of HPN-QMIX, HPN-VDN against fine-tuned QMIX and fine-tuned VDN.

PE Output Layer D. Similarly, we build a hypernetwork hpout (oi[j]) = MLP (oi[j]) to generate
the weight matrices Wout for the output layer D. The j-th output of layer D is computed as:

πi(aequiv|o′i)[j] = hihpout (o
′
i[j]) o′i = goi, ∀g ∈ G,∀j ∈ {1, . . . ,m} (8)

By utilizing hypernetworks, the input oi[j] and the weight matrix Wout[j] directly correspond one-
to-one. The input order change will result in the same output order change, thus achieving PE. See
Fig.4 for the whole architecture of HPN.

In this section, when describing our methods, we represent module A and D as networks with only
one layer, but the idea of DPN and HPN can be easily extended to multiple layers. Besides, both
DPN and HPN are general designs and can be easily integrated into existing MARL algorithms to
boost their performance. All parameters of DPN and HPN are trained end-to-end with backpropa-
gation according to the underlying RL loss function. Implementation details can be found in B.2.

5 EXPERIMENT

5.1 STARCRAFT MULTIAGENT CHALLENGE (SMAC AND SMACV2)

Setup and codebase. We first evaluate our methods in SMAC, which is an important testbed for
MARL algorithms. SMAC consists of a set of StarCraft II micro battle scenarios, where units are
divided into two teams: allies and enemies. The ally units are controlled by the agents while the
enemy units are controlled by the built-in rule-based bots. The agents can observe the distance,
relative location, health, shield and type of the units within the sight range. The goal is to train the
agents to defeat the enemy units. We evaluate our methods in all Hard and Super Hard scenarios.
Following Samvelyan et al. (2019); Hu et al. (2021a), the evaluation metric is a function that maps
the environment steps to test winning rates. Each experiment is repeated using 5 independent train-
ing runs and the resulting plots show the median performance as well as the 25%-75% percentiles.
Recently, Hu et al. (2021a) demonstrate that the optimized QMIX (Rashid et al., 2018) achieves the
SOTA performance in SMAC. Thus, all codes and hyperparameters used in this paper are based on
their released project PyMARL2. Detailed parameter settings are given in Appendix C. Except for
SMAC, we also evaluate our HPN on a new challenging benchmark SMACv2. Due to the space
limit, detailed settings and evaluation results are presented in Appendix A.10.

5.1.1 APPLYING HPN TO SOTA FINE-TUNED QMIX

We apply HPN to each Qi(ai|oi) of the fine-tuned QMIX and VDN (Hu et al., 2021a). The learning
curves over 8 hard and super hard scenarios are shown in Fig.5. We conclude that: (1) HPN-QMIX
surpasses the fine-tuned QMIX by a large margin and achieves 100% test win rates in almost all
scenarios, especially in 5m vs 6m, 3s5z vs 3s6z and 6h vs 8z, which has never been achieved be-
fore. Our HPN-QMIX achieves the new SOTA in SMAC; (2) HPN-VDN significantly improves
the performance of fine-tuned VDN, and it even surpasses the fine-tuned QMIX in most scenarios,
which minimizes the gaps between the VDN-based and QMIX-based algorithms; (3) HPN signif-
icantly improves the sample efficiency of both VDN and QMIX, especially in 5m vs 6m, MMM2,
3s5z vs 3s6z and 6h vs 8z. In 5m vs 6m, to achieve the same 80% win rate, HPN-VDN and HPN-
QMIX reduce the environmental interaction steps by a factor of 1

4 compared with the counterparts.
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Figure 6: Comparisons of HPN and DPN against baselines considering the PI and PE properties.

5.1.2 COMPARISON WITH PI AND PE BASELINES

The baselines we compared include: (1) DA-QMIX: According to (Ye et al., 2020), we apply data
augmentation to QMIX by generating more training data through shuffling the input order and us-
ing the generated data to additionally update the parameters. (2) SET-QMIX: we apply Deep Set
(Li et al., 2021) to each Qi(ai|oi) of QMIX, i.e., all xis use a shared embedding layer and then
aggregated by sum pooling, which can be considered as a special case of DPN, i.e., DPN(1). (3)
GNN-QMIX: We apply GNN (Liu et al., 2020; Wang et al., 2020b) to each Qi(ai|oi) of QMIX
to achieve PI. (4) ASN-QMIX (Wang et al., 2019): ASN-QMIX models the influences of differ-
ent actions on other agents based on their semantics, e.g., move or attack, which is similar to the
PE property considered in this paper. (5) UPDeT-QMIX (Hu et al., 2021b): a recently MARL
algorithm based on Transformer which implicitly considers the PI and PE properties.

The results are shown in Fig.6. We conclude that: HPN > DPN ≥ UPDeT ≥ ASN > QMIX > GNN
≈ SET ≈ DA6. Specifically, (1) HPN-QMIX achieves the best win rates, which validates the effec-
tiveness of our PI and PE design; (2) HPN-QMIX performs better than DPN-QMIX. The reason is
that HPN-QMIX utilizes more flexible hypernetworks to achieve PI and PE with enhanced repre-
sentational capacity. (3) UPDeT-QMIX and ASN-QMIX achieve comparable win rates with DPN-
QMIX in most scenarios, which indicates that utilizing the PI and PE properties is important. (4)
GNN-QMIX and SET-QMIX achieve similar performance. Although PI is achieved, GNN-QMIX
and SET-QMIX still perform worse than vanilla QMIX, especially in 3s5z vs 3s6z and 6h vs 8z.
This confirms that using a shared embedding layer ϕ(xi) limits the representational capacity and
restricts the final performance. (5) DA-QMIX improves the performance of QMIX in 3s5z vs 3s6z
through much more times of parameter updating. However, its learning process is unstable and it
collapses in all other scenarios due to the perturbation of the input features, which validates that it is
hard to make a permutation-sensitive function (e.g., MLP) achieve PI through training solely. The
learning curves of these PI/PE baselines equipped with VDN are shown in Appendix A.2, which
have similar results. All implementation details are shown in Appendix B.2. Besides, in Appendix
A.1, we also test and analyze these methods via a simple policy evaluation experiment.

5.1.3 ABLATION: ENLARGING THE NETWORK SIZE OF THE BASELINE
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Figure 7: Ablation studies.

For HPN, incorporating hypernetworks leads to
a ‘bigger’ model. To make a more fair compar-
ison, we enlarge the network size of Qi(ai|oi)
in fine-tuned QMIX (denoted as BIG-QMIX)
such that it has more parameters than HPN-
QMIX. Besides, the UPDeT baselines already
have comparable or more parameters than HPN.
The detailed sizes of these models are shown in
Table 3 of Appendix A.3. From Fig.7, we see
that simply increasing the parameter number cannot improve the performance. In contrast, it even
leads to worse results. VDN-based results are presented in Appendix A.3.

5.1.4 ABLATION: IMPORTANCE OF THE PE OUTPUT LAYER AND INPUT NETWORK CAPACITY

(1) To validate the importance of the PE output layer, we add the hypernetwork-based output layer
of HPN to SET-QMIX (denoted as HPN-SET-QMIX). From Fig.7, we see that incorporating a PE
output layer could significantly boost the performance of SET-QMIX. The converged performance
of HPN-SET-QMIX is superior to that of vanilla QMIX. (2) However, due to the limited represen-

6We use the binary comparison operators here to indicate the performance order of these algorithms.
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tational capacity of the shared embedding layer of Deep Set, the performance of HPN-SET-QMIX
is still worse than HPN-QMIX. The only difference between HPN-SET-QMIX and HPN-QMIX is
the number of embedding weight matrices in the input layer. The results validate that improving the
representational capacity of the PI input layer is beneficial.

5.1.5 APPLYING HPN TO MAPPO AND QPLEX
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Figure 8: Apply HPN to QPLEX and MAPPO.

The results of applying HPN to MAPPO (Yu
et al., 2021) and QPLEX (Wang et al., 2020a)
in 5m vs 6m and 3s5z vs 3s6z are shown in
Fig.8. We see that HPN-MAPPO and HPN-
QPLEX consistently improve the performance
of MAPPO and QPLEX, which validates that
HPN can be easily integrated into many types of
MARL algorithms and boost their performance.
Full results are shown in Appendix A.4.

5.2 MULTIAGENT PARTICLE ENVIRONMENT (MPE)
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Figure 9: Apply HPN and DPN to MADDPG.

We also evaluate the proposed DPN and HPN in
the cooperative navigation and the predator-prey
scenarios of MPE (Lowe et al., 2017), where the
actions only consist of movements. Therefore,
only the PI property is needed. We follow the
experimental settings of PIC (Liu et al., 2020)
(which utilizes GNN to achieve PI, i.e., GNN-
MADDPG) and apply our DPN and HPN to the
joint Q-function of MADDPG. We implement the code based on the official PIC codebase. The
learning curves are shown in Fig.9. We see that our HPN-MADDPG outperforms the GNN-based
PIC, DA-MADDPG and MADDPG baselines by a large margin, which validates the superiority of
our PI designs. The detailed experimental settings and full results are presented in Appendix A.6.

5.3 GOOGLE RESEARCH FOOTBALL (GRF)
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Figure 10: Apply HPN to GRF.

Finally, we evaluate HPN in two Google Re-
search Football (GRF) (Kurach et al., 2020) aca-
demic scenarios: 3 vs 1 with keeper and coun-
terattack hard. We control the left team players,
which need to coordinate their positions to orga-
nize attacks, and only scoring leads to rewards.
The observations consist of 5 parts: ball infor-
mation, left team, right team, controlled player
and match state. Each agent has 19 discrete ac-
tions, including moving, sliding, shooting and passing, where the targets of the passing actions
correspond to its teammates. Detailed settings can be found in Appendix A.7. We apply HPN to
QMIX and compare it with the SOTA CDS-QMIX (Chenghao et al., 2021). We show the aver-
age win rate across 5 seeds in Fig.10. HPN can significantly boost the performance of QMIX and
HPN-QMIX outperforms the SOTA method CDS-QMIX by a large margin in these two scenarios.

6 CONCLUSION

In this paper, we propose two PI and PE designs, both of which can be easily integrated into existing
MARL algorithms to boost their performance. Although we only test the proposed methods in
model-free MARL algorithms, they are general designs and have great potential to improve the
performance of model-based (Yuan et al., 2022), multitask and transfer learning (Wu et al., 2023)
algorithms. Besides, we currently follow the settings of (Qin et al., 2022; Wang et al., 2020b; Hu
et al., 2021b; Long et al., 2019), where the configuration of the input-output relationships and the
observation/state structure are set manually. For future works, it is interesting to automatically detect
such structural information.
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A ADDITIONAL EXPERIMENTAL SETTINGS AND RESULTS

A.1 A SIMPLE POLICY EVALUATION PROBLEM.

We present a simple policy evaluation experiment to show the influence of the model’s representa-
tional capacity on the converged performance. We consider the following permutation-invariant (PI)
models: ❶ Deep Set, ❷ DA-MLP (apply data augmentation to a permutation-sensitive MLP model),
❸ DPN (apply DPN to the same MLP model), ❹ HPN (apply HPN to the same MLP model) and ❺
Attention (use self-attention layers and a pooling function to achieve PI).

The experimental settings are as follows. There are 2 agents in total. Each agent i only has one
dimension of feature xi. For the convenience of analyzing, we set that each xi is an integer and
xi ∈ {1, 2, ..., 30}, i.e., each agent i only has 30 different features. Thus the size of the joint
state space ([x1, x2]) after concatenating is 30 ∗ 30 = 900. To make the policy evaluation task
permutation-invariant, we simply set the target value Y of each state [x1, x2] as x1 ∗ x2.

In section 4.3, when introducing HPN, we asked a question that whether we can provide an infi-
nite number of candidate weight matrices of DPN. In this simple task, we can directly construct
a separate weight matrix for each feature xi. Since xi is discrete (which is enumerable), we can
explicitly maintain a parameter table and exactly record a different embedding weight for each dif-
ferent feature xi. We denote this direct method as ❻ DPN(∞), which means ‘DPN with infinite
weights’. Our HPN uses a hypernetwok to approximately achieve ‘infinite weight’ by generating
a different weight matrix for each different input xi. We use the Mean Square Error (MSE) as the
loss function to train these different models. The code for this simple experiment is also available at
https://github.com/tjuHaoXiaotian/API-Network (see ‘Synthetic Policy Evaluation.py’).

The comparison of the learning curves and the converged MSE losses of these different PI models are
shown in Fig.11 and Table 1 respectively. We conclude that DPN(∞) > HPN > Attention > DPN
> DeepSet > DA-MLP, where ‘>’ means ‘performs better than’, which indicates that increasing the
representational capacity of the model can help to achieve much less MSE loss.

Table 1: The comparison of the converged MSE losses of these different PI models.
DA-MLP Deep Set DPN Attention HPN DPN(∞)

MSE 1495.55 1401.23 119.54 49.12 6.34 0.37
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Figure 11: The comparison of the learning curves of different PI models.

If we keep each xi ∈ {1, 2, ..., 30} and simply increase the agent number, the changes of the original
state space by simple concatenation and the reduced state space by using PI representations are
shown in Table 2 below. We see that by using PI representations, the state space can be significantly
reduced.

Table 2: Changes of the state space size with the increase of the agent number.
agent number 2 3 4 5

simple concatenation 900 27000 810000 24300000
PI representation (percent) 465 (0.52) 4960 (0.18) 40920 (0.05) 278256 (0.01)
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Figure 12: Comparisons of VDN-based methods considering the PI and PE properties.

A.2 COMPARISON WITH VDN-BASED PI AND PE BASELINES

The learning curves of the PI/PE baselines equipped with VDN are shown in Fig.12, which demon-
strate that: HPN ≥ DPN ≥ UPDeT > VDN > GNN ≈ SET ≈ DA7. Specifically, (1) HPN-VDN
and DPN-VDN achieve the best win rates; (2) Since UPDeT uses a shared token embedding layer
followed by multi-head self-attention layers to process all components of the input sets, the PI and
PE properties are implicitly taken into consideration. The results of UPDeT-VDN also validate that
incorporating PI and PE into the model design could reduce the observation space and improve
the converged performance in most scenarios. (3) GNN-VDN achieves slightly better performance
than SET-VDN. Although permutation-invariant is maintained, GNN-VDN and SET-VDN perform
worse than vanilla QMIX, (especially in 3s5z vs 3s6z and 6h vs 8z, the win rates are approximate
0%). This confirms that the use of a shared embedding layer ϕ(xi) for each component xi limits the
representational capacities and restricts the final performance. (4) DA-VDN significantly improves
the learning speed and performance of vanilla VDN in 3s5z vs 3s6z by data augmentation and much
more times of parameter updating. However, the learning process is unstable, which collapses in all
other scenarios due to the perturbation of the input features, which validates that it is hard to train a
permutation-sensitive function (e.g., MLP) to output the same value when taking different orders of
features as inputs.

A.3 ABLATION STUDIES.
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Figure 13: Ablation studies. All methods are equipped with VDN.

A.3.1 ENLARGING THE NETWORK SIZE.

We also enlarge the agent network of vanilla VDN (denoted as BIG-VDN) such that the number of
parameters is larger than our HPN-VDN. The detailed numbers of parameters are shown in Table 3.
The results are shown in Fig.13. We see that simply increasing the parameter number cannot always
guarantee better performance. For example, in 5m vs 6m, the win rate of BIG-VDN is worse than
the vanilla VDN. In 3s5z vs 3s6z and 6h vs 8z, BIG-VDN does achieve better performance, but the
performance of BIG-VDN is still worse than our HPN-VDN in all scenarios.

A.3.2 IMPORTANCE OF THE PE OUTPUT LAYER AND THE CAPACITY OF THE PI INPUT LAYER

To validate the importance of the permutation-equivariant output layer, we also add the
hypernetwork-based output layer of HPN to SET-VDN (denoted as HPN-SET-VDN). The results
are shown in Fig.13. We see that incorporating an APE output layer could significantly boost the

7We use the binary comparison operators here to indicate the performance order of these algorithms.
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Table 3: The number of parameters of the individual Q-networks in VDN, QMIX, BIG-VDN, BIG-
QMIX, HPN-VDN, HPN-QMIX, UPDeT-VDN and UPDeT-QMIX.

Parameter Size VDN(QMIX) BIG-VDN(QMIX) HPN-VDN(QMIX) UPDeT-VDN(QMIX)
5m vs 6m 30.412K 109.964K 72.647K 96.294K
3s vs 5z 29.707K 108.555K 81.031K 96.246K

8m vs 9m 32.911K 114.959K 72.839K 96.438K
corridor 39.262K 127.646K 76.999K 96.39K

3s5z vs 3s6z 36.175K 121.487K 98.375K 96.582K
6h vs 8z 32.206K 113.55K 76.935K 96.342K

performance of SET-VDN, and that the converged performance of HPN-SET-VDN is superior to the
vanilla VDN in 5m vs 6m and 3s5z vs 3s6z.

However, due to the limited representational capacity of the shared embedding layer of Deep Set,
the performance of HPN-SET-VDN is still worse than our HPN-VDN, especially in 6h vs 8z. Note
that the only difference between HPN-VDN and HPN-SET-VDN is the input layer, e.g., using
hypernetwork-based customized embeddings or a simply shared one. The results validate the im-
portance of improving the representational capacity of the permutation-invariant input layer.

A.4 APPLYING HPN TO QPLEX AND MAPPO
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Figure 14: The learning curves of HPN-QPLEX compared with vanilla QPLEX in the hard and
super hard scenarios of SMAC.
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Figure 15: The learning curves of HPN-MAPPO compared with the vanilla MAPPO in the hard and
super hard scenarios of SMAC.
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To demonstrate that our methods can be easily integrated into many types of MARL algorithms and
boost their performance, we also apply HPN to a typical credit-assignment method QPLEX (Wang
et al., 2020a) (denoted as HPN-QPLEX) and a policy-based MARL algorithm MAPPO (Yu et al.,
2021) (denoted as HPN-MAPPO). The results are shown in Fig.14 and Fig.15. We see that HPN
significantly improves the performance of QPLEX and MAPPO, which validates that our method
can be easily combined with existing MARL algorithms and improves their performance (especially
for super hard scenarios).

A.5 APPLYING HPN TO DEEP COORDINATION GRAPH.

Recently, Deep Coordination Graph (DCG) (Böhmer et al., 2020) scales traditional coordination
graph based MARL methods to large state-action spaces, shows its ability to solve the relative over-
generalization problem, and obtains competitive results on StarCraft II micromanagement tasks.
Further, based on DCG, (Wang et al., 2021) proposes an improved version, named Context-Aware
SparsE Coordination graphs (CASEC). CASEC learns a sparse and adaptive coordination graph
(Wang et al., 2021), which can largely reduce the communication overhead and improve the perfor-
mance. Besides, CASEC incorporates action representations into the utility and payoff functions to
reduce the estimation errors and alleviate the learning instability issue.

Both DCG and CASEC inject the permutation invariance inductive bias into the design of the pair-
wise payoff function qij(ai, aj |oi, oj). They achieve permutation invariance by permuting the input
order of [oi, oj ] and taking the average of both. To show the generality of our method, we also apply
HPN to the utility function and payoff function of CASEC and show the performance in Fig.16. The
codes of CASEC and HPN-CASEC are also available at https://github.com/tjuHaoXiaotian/API-
Network (see code/src/config/algs/casec.yaml and code/src/config/algs/hpn casec.yaml).
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Figure 16: The learning curves of HPN-CASEC and CASEC in 5m vs 6m.

In Fig.16, we compare HPN-CASEC with the vanilla CASEC in 5m vs 6m. Results show that
HPN can significantly improve the performance of CASEC, which validate that HPN is very easy to
implement and can be easily integrated into many existing MARL approaches.

A.6 MULTIAGENT PARTICLE ENVIRONMENT

We evaluate the proposed DPN and HPN on the classical Multiagent Particle Environment (MPE)
(Lowe et al., 2017) tasks, where the actions only consist of movement actions. Therefore, only the
permutation invariance property is needed. We follow the experimental settings of PIC (permutation-
invariant Critic for MADDPG, which utilizes GNN to achieve PI, i.e., GNNMADDPG) (Liu et al.,
2020) and apply our DPN and HPN to the centralized critic Q-function of MADDPG (Lowe et al.,
2017). Each component xi represents the concatenation of agent i’s observation and action. The
input set Xj contains all agents’ observation-actions. We implement the code based on the official
PIC. The baselines we considered are PIC (Liu et al., 2020), DA-MADDPG (Ye et al., 2020) and
MADDPG (Lowe et al., 2017). The tasks we consider are as follows:

• Cooperative navigation: n agents move cooperatively to cover L landmarks in the envi-
ronment. The reward encourages the agents to get close to landmarks. An agent observes
its location and velocity, and the relative location of the landmarks and other agents.

• Cooperative predator-prey: n slower predators work together to chase M fast-moving
prey. The predators get a positive reward when colliding with prey. Preys are environment
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controlled. A predator observes its location and velocity, the relative location of the L
landmarks and other predators and the relative location and velocity of the prey.

The learning curves of different methods in the cooperative navigation task (the agent number n = 6)
and the cooperative predator-prey task (the agent number n = 3) are given in Fig.9. Besides, We fur-
ther test HPN on two more cooperative navigation tasks with 100 and 200 agents respectively. The
learning curves are shown in Figure 17. The results show that HPN-MADDPG can significantly im-
prove the performance of vanilla MADDPG and achieves superior sample efficiency and converged
performance than PIC. All experiments are repeated for five runs with different random seeds. We
see that our HPN-MADDPG outperforms the PIC, DA-MADDPG and MADDPG baselines in these
two tasks, which validates the superiority of our permutation-invariant designs.
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Figure 17: Comparisons of HPN-MADDPG against PIC, DA-MADDPG and MADDPG in cooper-
ative navigation with 100 and 200 agents.

A.7 GOOGLE RESEARCH FOOTBALL

We evaluate HPN in two Google Research Football (GRF) academic scenarios: 3 vs 1 with keeper
and counterattack hard. In these tasks, we control the left team players except for the goalkeeper.
The right team players are controlled by the built-in rule-based bots. The agents need to coordinate
their positions to organize attacks and only scoring leads to rewards. The observations are factor-
izable and are composed of five parts: ball information, left team, right team, controlled player
information and match state. Detailed feature lists are shown in Table 4. Each agent has 19 discrete
actions, including moving, sliding, shooting and passing. Following the settings of CDS (Chenghao
et al., 2021), we also make a reasonable change to the two half-court offensive scenarios: we will
lose if our players or the ball returns to our half-court. All methods are tested with this modification.
The final reward is +100 when our team wins, -1 when our player or the ball returns to our half-court,
and 0 otherwise.

We apply HPN to QMIX and compare it with the SOTA CDS-QMIX (Chenghao et al., 2021). In
detail, when applying HPN to QMIX, both the PI actions, e.g., moving, sliding and shooting, and
the PE actions, e.g., long pass, high pass and short pass are considered. For each player, since the
targets of these passing actions directly correspond to its teammates, we apply the PE output layer
to generate the Q-values of these passing actions, where the hypernetwork takes each ally player’s
features as input and generates the weight matrices for the passing actions. Besides, in the official
GRF environment, as we cannot directly control which teammates the current player passes the ball
to, we take a max pooling over all ally-related Q-values to get the final Q-values for the three passing
actions. We show the average win rate across 5 seeds in Fig.10. HPN can significantly boost the
performance of QMIX and our HPN-QMIX outperforms the SOTA method CDS by a large margin
in these two scenarios.

A.8 GENERALIZATION: CAN HPN GENERALIZE TO A NEW TASK WITH A DIFFERENT
NUMBER OF AGENTS?

Apart from achieving PI and PE, another benefit of HPN is that it can naturally handle variable
numbers of inputs and outputs. Therefore, as also stated in the conclusion section, HPN can be
potentially used to design more efficient multitask learning and transfer learning algorithms. For
example, we can directly transfer the learned HPN policy in one task to new tasks with different
numbers of agents and improve the learning efficiency in the new tasks. Transfer learning results of
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Observation

Player Absolute position
Absolute speed

Left team Relative position
Relative speed

Right team Relative position
Relative speed

Ball Absolute position
Belong to (team ID)

State

Left team

Absolute position
Absolute speed

Tired factor
Player type

Right team

Absolute position
Absolute speed

Tired factor
Player type

Ball

Absolute position
Absolute speed

Absolute rotate speed
Belong to (team ID)

Belong to (player ID)

Table 4: The feature composition of the observation and the state in Google Research Football

(a) Transfer learning results on 12m. Red: reload the learned policy
in 5m to 12m and then continuously train the policy. Blue: learn
from scratch.

(b) Transfer learning results on 8m vs 10m. Red: reload the learned policy in
5m vs 6m to 8m vs 10m and then continuously train the policy. Blue: learn
from scratch.

(c) Transfer learning results on 3s vs 5z. Red: reload the learned policy in
3s vs 3z to 3s vs 5z and then continuously train the policy. Blue: learn from
scratch.

Figure 18: Transferring the learned HPN-VDN policy in one task to a new task with a different
number of agents.
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5m → 12m, 5m vs 6m → 8m vs 10m, 3s vs 3z → 3s vs 5z are shown in Fig.18. We see that the
previously trained HPN policies can serve as better initialization policies for new tasks.

A.9 TO ACHIEVE PI AND PE, WHAT IF WE JUST SORT THE ENTITIES ACCORDING TO
DISTANCE FROM THE FOCAL AGENT?

(1) When we first started working on this project, we have also considered a similar baseline: we
sort the entities according to (type, distance), i.e., according to their types first and then the relative
distances if two entities’ types are same. But we found that this solution do not always work well.
Here, we provide the learning curves of HPN, QMIX, VDN, SORT-QMIX, and SORT-VDN in 4
hard and super hard scenarios on SMAC in Figure 19. The results show that the sorting baseline can
slightly improve the performance of vanilla QMIX/VDN in 5m vs 6m and 3s5z vs 3s6z. However,
in 8m vs 9m and 6h vs 8z, it harms the performance.

(2) The reason is that each entity has many types of features, e.g., relative x, relative y, relative
distance, entity type, health point, shield, etc. Relative distance is just one of them. Simply sorting
the entities by their relative distances while ignoring the influences of the other features may not
be appropriate. Besides, as different x and y can have the same distance and different distances
can have the same order, the same oi[j] may be arranged at different positions and be multiplied by
different ‘weight matrices‘ (according to zi =

∑m
j=1 oi[j]Win [j]). Therefore, learning may become

unstable if we frequently reorder the inputs by distance only.

(3) Thus, our target is not only matching the observation and action belonging to the same entity
but stabilizing the learning process by always assigning the same weight matrix Win [j], i.e., a
stable weight, to the same entity features oi[j] no matter where oi[j] is arranged. In this paper, we
propose DPN and HPN to achieve this.
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(a) Comparisons of HPN-VDN, VDN, and a baseline that sorts the entities in observation according to their
distances from the focal agent (denoted as SORT-VDN).
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(b) Comparisons of HPN-QMIX, QMIX, and a baseline that sorts the entities in observation according to their
distances from the focal agent (denoted as SORT-QMIX).

Figure 19: Comparisons of HPN with the sorting based baseline.

A.10 EVALUATE HPN ON SMAC-V2

SMAC-v2 makes three major changes to SMAC: randomising start positions, randomising unit
types, and restricting the agent field-of-view and shooting range to a cone. These first two changes
increase more randomness to challenge contemporary MARL algorithms. The third change makes
features harder to infer and adds the challenge that agents must actively gather information (require
more efficient exploration). Since our target is not to design more efficient exploration algorithms,
we keep the field-of-view and attack of the agents a full circle as in SMAC.

• Random Start Positions: Random start positions come in two different types. First, there
is the surrounded type, where the allied units are spawned in the middle of the map, and
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surrounded by enemy units. This challenges the allied units to overcome the enemies ap-
proach from multiple angles at once. Secondly, there are the reflect position scenarios.
These randomly select positions for the allied units, and then reflect their positions in the
midpoint of the map to get the enemy spawn positions. Example figures are shown in
Figure 20 below.

• Random Unit Types: Battles in SMACv2 do not always feature units of the same type
each time, as they did in SMAC. Instead, units are spawned randomly according to certain
pre-fixed probabilities. Units in StarCraft II are split up into different races. Units from
different races cannot be on the same team. For each of the three races (Protoss, Terran,
and Zerg), SMACv2 uses three unit types. Detailed generation probabilities are shown in
Figure 21.

Figure 20: Examples of the two different types of start positions, opposite and surrounded. Allied
units are shown in blue and enemy units in dark red.

Figure 21: Detailed generation probabilities of the three types of units for the three races (Protoss,
Terran, and Zerg).

Our HPN can naturally handle the two types of new challenges. Thanks to the PI and PE prop-
erties, our HPN is more robust to the randomly changed start positions of the entities. Thanks to
the entity-wise modeling and using hypernetwork to generate a customized weight matrix for each
type of unit, HPN can handle the randomly generated unit types as well. The comparisons of HPN-
VDN with VDN on three difficult scenarios across the three races (Protoss, Terran, and Zerg) are
shown in Figure 22. Results show that our HPN significantly improves the sample efficiency and
the converged test win rates of the baseline VDN.
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Figure 22: The learning curves of HPN-VDN and VDN in 3 difficult scenarios of SMAC-v2.

B TECHNICAL DETAILS

B.1 DECENTRALIZED PARTIALLY OBSERVABLE MDP

We model a fully cooperative multiagent task as a Dec-POMDP (Oliehoek & Amato, 2016), which
is defined as a tuple ⟨N ,S,O,A, P,R, Z, γ⟩. N is a set of n agents. S is the set of global states.
O = {O1, . . .On} denotes the observation space for n agents. A = A1 × . . . × An is the joint
action space, where Ai is the set of actions that agent i can take. At each step, each agent i receives
a private observation oi ∈ Oi according to the observation function Z(s,a) : S × A → O, and
produces an action ai ∈ Ai by a policy πi(ai|oi). All agents’ individual actions constitute a joint
action a = ⟨a1, ..., an⟩ ∈ A. Then the joint action a is executed and the environment transits to
the next state s′ according to the transition probability P (s′|s,a). All agents receive a shared global
reward according to the reward function R(s,a). All individual policies constitute the joint policy
π = π1 × . . . × πn. The target is to find an optimal joint policy π which could maximize the
expected return Rt =

∑T
t=0 γ

tr (st,at), where γ is a discount factor and T is the time horizon.
The joint action-value function is defined as Qπ(st,at) = Eπ,P [Rt|st,at]. Each agent’s individual
action-value function is denoted as Qi(oi, ai).

B.2 IMPLEMENTATION DETAILS OF OUR APPROACH AND BASELINES

The key points of implementing the baselines and our methods are summarized here:

(1) DPN and HPN: The proposed two methods inherently support heterogeneous scenarios since
the entity’s ‘type’ information has been taken into each entity’s features. And the sample efficiency
can be further improved within homogeneous agents compared to fixedly-ordered representation.
For MMM and MMM2, we implemented a permutation-equivariant ‘rescue-action’ module for the
only Medivac agent, which uses similar prior knowledge to ASN and UPDeT, i.e., action semantics.
To focus on the core idea of our methods, we omitted these details in the method section.

The objective to train the weight selection network of PDN. As stated in the last paragraph of
Section 4, all parameters of DPN are trained end-to-end with backpropagation according to the RL
loss function. The weight selection network and the other networks work cooperatively to minimize
the overall RL loss function.

How PI is achieved of DPN. As described in Section 4.2, for each oi[j], the weight selection net-
work outputs the probability of selecting each weight matrix. During the forward pass at training
step t, given the parameter snapshot of the weight selection network, the output probability of se-
lecting each weight matrix is fixed. For each oi[j], we select the weight matrix with the maximum
probability. However, directly selecting the argmax index is not differentiable. To make the selec-
tion process trainable, we apply a Straight Through Estimator [7] to get the one-hot encoding of the
argmax index. We denote it as p̂in (oi[j]). The weight matrix with the maximum probability can
be acquired by p̂in (oi[j]) · Win. As selecting the weight matrix with the maximum probability is a
deterministic process, according to Equation (5), PI is guaranteed.

Besides, to encourage more exploration at the beginning of training, we also add small gumbel noises
(Jang et al., 2016) to the ‘logits‘ within the epsilon anneal time. Within this interval, PI cannot be
strictly guaranteed. When the epsilon anneal schedule is over, PI will be strictly guaranteed. The
Straight Through Estimator written in PyTorch is shown below:
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Figure 23: Applying Data Augmentation (DA) to the SMAC benchmark.

1 def straight_through(y_soft, dim):
2 # Straight Through Estimator.
3 index = y_soft.max(dim, keepdim=True)[1]
4 y_hard = th.zeros_like(y_soft).scatter_(dim, index, 1.0)
5 ret = y_hard - y_soft.detach() + y_soft
6 return ret

(2) Data Augmentation (DA) (Ye et al., 2020): we apply the core idea of Data Augmentation
(Ye et al., 2020) to SMAC by randomly generating a number of permutation matrices to shuffle
the ‘observation’, ‘state’, ‘action’ and ‘available action mask’ for each sample simultaneously to
generate more training data. An illustration of the Data Augmentation process is shown in Fig.23.
A noteworthy detail is that since the attack actions are permutation-equivariant to the enemies in
the observation, the same permutation matrix M2 that is utilized to permute oenemy

i should also be
applied to permute the ‘attack action’ and ‘available action mask of attack action’ as well. The code
is implemented based on PyMARL2 8 for fair comparison.

(3) Deep Set (Zaheer et al., 2017; Li et al., 2021): the only difference between SET-QMIX and
the vanilla QMIX is that the vanilla QMIX uses a fully connected layer to process the fixedly-
ordered concatenation of the m components in oi while SET-QMIX uses a shared embedding layer
hi = ϕ(xi) to separately process each component xi in oi first, and then aggregates all his by sum
pooling. The code is also implemented based on PyMARL2 for fair comparison.

(4) GNN: Following PIC (Liu et al., 2020) and DyAN (Wang et al., 2020b), we apply GNN to the
individual Q-network of QMIX (denoted as GNN-QMIX) to achieve permutation-invariant. The
code is also implemented based on PyMARL2.

(5) ASN (Wang et al., 2019): we use the official code and adapt the code to PyMARL2 for fair
comparison.

(6) UPDeT (Hu et al., 2021b): we use the official code 9 and adapt the code to PyMARL2 for fair
comparison.

(7) VDN and QMIX: As mentioned in Section 3, vanilla VDN/QMIX uses fixedly-ordered entity-
input and fixedly-ordered action-output (both are sorted by agent/enemy indices). Although VDN
and QMIX do not explicitly consider the permutation invariance and permutation equivariance prop-
erties, they train a permutation-sensitive function to figure out the input-output relationships accord-
ing to their fixed positions, which is implicit and inefficient.

The codes for the baselines are also published at https://github.com/tjuHaoXiaotian/API-Network.

8https://github.com/hijkzzz/pymarl2
9https://github.com/hhhusiyi-monash/UPDeT
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C HYPERPARAMETER SETTINGS

For all MARL algorithms we use in SMAC (Samvelyan et al., 2019) (under the MIT License), we
keep the hyperparameters the same as in PyMARL2 (Hu et al., 2021a) (under the Apache License
v2.0). We list the detailed hyperparameter settings used in the paper below in Table 5 to help peers
replicate our experiments more easily.

Table 5: Hyperparameter Settings of VDN-based or QMIX-based Methods.
Parameter Name Value

Exploration-related
action selector epsilon greedy
epsilon start 1.0

epsilon finish 0.05
epsilon anneal time 100000 (500000 for 6h vs 8z)

Sampler-related
runner parallel

batch size run 8 (4 for 3s5z vs 3s6z)
buffer size 5000

t max 10050000
Agent-related

mac hpn mac for HPN, dpn mac for DPN,
set mac for Deep Set, updet mac for UPDeT and n mac for others

agent hpn rnn for HPN, dpn rnn for DPN,
set rnn for Deep Set, updet rnn for UPDeT and rnn for others

HPN hidden dim 64 (only for HPN)
HPN layer num 2 (only for HPN)

permutation net dim 64 (only for DPN)
Training-related

softmax tau 0.5 (only for DPN)
learner nq learner
mixer qmix or vdn

mixing embed dim 32 (only for qmix-based)
hypernet embed 64 (only for qmix-based)

lr 0.001
td lambda 0.6 (0.3 for 6h vs 8z)
optimizer adam

target update interval 200

D COMPUTING ENVIRONMENT

We conducted our experiments on an Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz processor
based system. The system consists of 2 processors, each with 26 cores running at 2.60GHz (52 cores
in total) with 32KB of L1, 1024 KB of L2, 40MB of unified L3 cache, and 250 GB of memory.
Besides, we use 2 GeForce GTX 1080 Ti GPUs to facilitate the training procedure. The operating
system is Ubuntu 16.04.

E LIMITATIONS

We currently follow the settings of (Qin et al., 2022; Wang et al., 2020b; Hu et al., 2021b; Long
et al., 2019; Wang et al., 2019), where the configuration of the input-output relationships and the
observation/state structures are set manually.

What if the observations are images or the structural information is not available?

The high-level idea of this paper is to leverage some formats of symmetries to reduce the size of
the search space. Since typical MARL benchmarks represent observations as factorizable vectors
(which can provide more direct and compact information than images), we currently focus on the
permutation symmetries, i.e., PI and PE.
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For image inputs, the rotational or reflectional symmetries are more prominent characteristics. Thus,
we could leverage rotation invariance or rotation equivariance to design better MARL algorithms,
which is also a novel research direction.

For vector inputs, when the structural information is unknown, a potential solution is:

• (1) Learning action representations using a forward model. We want to learn action repre-
sentations that can reflect the effects of actions on the environment and other agents. The
effect of an action can be measured by the induced reward and the change in the states.

• (2) Using all actions’ representations as queries and using all entities’ embedded features
(potentially generated by HPN) as keys and values, we leverage the self-attention mecha-
nism to generate the Q-values of each action. Since the self-attention computation is invari-
ant to the input entities’ order, PI and PE are achieved. And the input-output relationships
may be learned implicitly by the self-attention mechanism.

Automatically detecting such structural information is interesting and we leave this as future works.
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